modal-unbiased estimate - significado y definición. Qué es modal-unbiased estimate
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es modal-unbiased estimate - definición

EXPECTATION OF ERROR OF ESTIMATION
Unbiased estimator; Biased estimator; Estimator bias; Unbiased estimate; Unbiasedness

Modal operator         
LOGICAL OPERATOR IN MODAL LOGIC
Modal connective
A modal connective (or modal operator) is a logical connective for modal logic. It is an operator which forms propositions from propositions.
Stein's unbiased risk estimate         
IN ESTIMATION THEORY
Stein's unbiased risk estimator
In statistics, Stein's unbiased risk estimate (SURE) is an unbiased estimator of the mean-squared error of "a nearly arbitrary, nonlinear biased estimator." In other words, it provides an indication of the accuracy of a given estimator.
Modal share         
SHARE OF MODE OF TRANSPORT
Modal split; Mode share; Modal shift; Modal ratio
A modal share (also called mode split, mode-share, or modal split) is the percentage of travelers using a particular type of transportation or number of trips using said type.Glossary (Engineering Services – Transportation, City of Vancouver website.

Wikipedia

Bias of an estimator

In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency; because a biased estimator gives a lower value of some loss function (particularly mean squared error) compared with unbiased estimators (notably in shrinkage estimators); or because in some cases being unbiased is too strong a condition, and the only unbiased estimators are not useful.

Bias can also be measured with respect to the median, rather than the mean (expected value), in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Mean-unbiasedness is not preserved under non-linear transformations, though median-unbiasedness is (see § Effect of transformations); for example, the sample variance is a biased estimator for the population variance. These are all illustrated below.